Optimizing error correction of RNAseq reads
نویسنده
چکیده
Motivation: The correction of sequencing errors contained in Illumina reads derived from genomic DNA is a common pre-processing step in many de novo genome assembly pipelines, and has been shown to improved the quality of resultant assemblies. In contrast, the correction of errors in transcriptome sequence data is much less common, but can potentially yield similar improvements in mapping and assembly quality. This manuscript evaluates several popular read-correction tool’s ability to correct sequence errors commonplace to transcriptome derived Illumina reads. Results: I evaluated the efficacy of correction of transcriptome derived sequencing reads using using several metrics across a variety of sequencing depths. This evaluation demonstrates a complex relationship between the quality of the correction, depth of sequencing, and hardware availability which results in variable recommendations depending on the goals of the experiment, tolerance for false positives, and depth of coverage. Overall, read error correction is an important step in read quality control, and should become a standard part of analytical pipelines. Availability: Results are non-deterministically repeatable using AMI:ami-3dae4956 (MacManes EC 2015) and the Makefile available here: https://goo.gl/oVIuE0 Contact: [email protected] and
منابع مشابه
Improving transcriptome assembly through error correction of high-throughput sequence reads
The study of functional genomics, particularly in non-model organisms, has been dramatically improved over the last few years by the use of transcriptomes and RNAseq. While these studies are potentially extremely powerful, a computationally intensive procedure, the de novo construction of a reference transcriptome must be completed as a prerequisite to further analyses. The accurate reference i...
متن کاملThe draft genome of MD-2 pineapple using hybrid error correction of long reads
The introduction of the elite pineapple variety, MD-2, has caused a significant market shift in the pineapple industry. Better productivity, overall increased in fruit quality and taste, resilience to chilled storage and resistance to internal browning are among the key advantages of the MD-2 as compared with its previous predecessor, the Smooth Cayenne. Here, we present the genome sequence of ...
متن کاملCorrection of sequencing errors in a mixed set of reads
MOTIVATION High-throughput sequencing technologies produce large sets of short reads that may contain errors. These sequencing errors make de novo assembly challenging. Error correction aims to reduce the error rate prior assembly. Many de novo sequencing projects use reads from several sequencing technologies to get the benefits of all used technologies and to alleviate their shortcomings. How...
متن کاملAccurate self-correction of errors in long reads using de Bruijn graphs
Motivation New long read sequencing technologies, like PacBio SMRT and Oxford NanoPore, can produce sequencing reads up to 50 000 bp long but with an error rate of at least 15%. Reducing the error rate is necessary for subsequent utilization of the reads in, e.g. de novo genome assembly. The error correction problem has been tackled either by aligning the long reads against each other or by a h...
متن کاملIterative error correction of long sequencing reads maximizes accuracy and improves contig assembly
Next-generation sequencers such as Illumina can now produce reads up to 300 bp with high throughput, which is attractive for genome assembly. A first step in genome assembly is to computationally correct sequencing errors. However, correcting all errors in these longer reads is challenging. Here, we show that reads with remaining errors after correction often overlap repeats, where short errone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015